[en] LONG MEMORY MODELS TO GENERATING STREAMFLOW SCENARIO

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: GUILHERME ARMANDO DE ALMEIDA PEREIRA
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=18252&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=18252&idi=2
http://doi.org/10.17771/PUCRio.acad.18252
Resumo: [pt] Este trabalho tem como objetivo o estudo das séries de energia natural afluente (ENAs) por meio de modelos de memória longa, no intuito de gerar cenários hidrológicos sintéticos. Séries temporais com memória longa são definidas como séries que apresentam persistente dependência entre observações afastadas por um longo período de tempo. Inicialmente procedeu-se uma análise exploratória através da qual foi possível encontrar características de série temporais com longa dependência. Os modelos empregados nesta dissertação foram os SARFIMA (p,d.q)x(P,D.Q)s em que os parâmetros dˆ e Dˆ assumem valores fracionários, para que seja possível a incorporação de efeitos de longa dependência e/ou cíclicos. Também foi utilizada a técnica de computação intensiva bootstrap em diversas etapas, dentre elas a construção de um teste não paramétrico para significância dos parâmetros fracionários, assim como bootstrap nos resíduos do modelo para a geração de séries hidrológicas sintéticas. Para averiguar a adequabilidade dos cenários gerados, foram realizados testes estatísticos de igualdade de médias, igualdade de variâncias, testes de aderência e análise de sequências. Por meio destes, pode-se concluir que os modelos empregados nesta dissertação conseguiram reproduzir de maneira satisfatória o histórico disponível de ENAs.