[en] ANALYSIS AND FORECASTING OF TIME SERIES USING MULTIPLE SEASONAL EXPONENTIAL SMOOTHING AND SIMULATION TECHNIQUES IN THE WIND ENERGY PRODUCTION
Ano de defesa: | 2016 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=26412&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=26412&idi=2 http://doi.org/10.17771/PUCRio.acad.26412 |
Resumo: | [pt] A presente dissertação se insere no contexto da energia eólica, que é a fonte de energia que mais cresce na matriz elétrica brasileira, segundo dados da Empresa de Pesquisa de Energia (EPE), com projeções para que esse crescimento se mantenha. Com isso, a principal motivação do presente trabalho é o fato de que desenvolver e aplicar métodos de previsão cada vez mais precisos para as variáveis determinantes na produção de energia eólica em um aerogerador, como a velocidade do vento, é de crucial importância para o planejamento da operação do sistema elétrico nacional. Logo, o objetivo principal do trabalho é adaptar e aplicar uma metodologia de previsão de séries temporais em um banco de dados formado por medições de velocidade de vento. A metodologia se constrói a partir da análise exploratória dos dados, onde pode se observar características importantes, como estacionariedade na média e uma estrutura sazonal complexa, que envolve um ciclo diário e uma sazonalidade mensal. Com isso, foi adaptado um modelo de amortecimento exponencial com múltiplos ciclos que incorpora simulação de Monte Carlo e decomposição da série através do método TBATS, para realizar as previsões. Como resultados e conclusões, é possível observar que modelo adaptado se mostrou adequado para tratar o problema proposto, quando comparado com os modelos de previsão estabelecidos pela literatura, resultando em um aumento na precisão das previsões realizadas. |