[en] ANALYSIS AND FORECASTING OF TIME SERIES USING MULTIPLE SEASONAL EXPONENTIAL SMOOTHING AND SIMULATION TECHNIQUES IN THE WIND ENERGY PRODUCTION

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: MATHEUS FERREIRA DE BARROS
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=26412&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=26412&idi=2
http://doi.org/10.17771/PUCRio.acad.26412
Resumo: [pt] A presente dissertação se insere no contexto da energia eólica, que é a fonte de energia que mais cresce na matriz elétrica brasileira, segundo dados da Empresa de Pesquisa de Energia (EPE), com projeções para que esse crescimento se mantenha. Com isso, a principal motivação do presente trabalho é o fato de que desenvolver e aplicar métodos de previsão cada vez mais precisos para as variáveis determinantes na produção de energia eólica em um aerogerador, como a velocidade do vento, é de crucial importância para o planejamento da operação do sistema elétrico nacional. Logo, o objetivo principal do trabalho é adaptar e aplicar uma metodologia de previsão de séries temporais em um banco de dados formado por medições de velocidade de vento. A metodologia se constrói a partir da análise exploratória dos dados, onde pode se observar características importantes, como estacionariedade na média e uma estrutura sazonal complexa, que envolve um ciclo diário e uma sazonalidade mensal. Com isso, foi adaptado um modelo de amortecimento exponencial com múltiplos ciclos que incorpora simulação de Monte Carlo e decomposição da série através do método TBATS, para realizar as previsões. Como resultados e conclusões, é possível observar que modelo adaptado se mostrou adequado para tratar o problema proposto, quando comparado com os modelos de previsão estabelecidos pela literatura, resultando em um aumento na precisão das previsões realizadas.