[pt] DESENVOLVIMENTO DE MODELOS DE PREVISÃO DE GERAÇÃO DE ENERGIA ELÉTRICA APLICADOS ÀS PEQUENAS CENTRAIS HIDRELÉTRICAS
Ano de defesa: | 2020 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=47236&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=47236&idi=2 http://doi.org/10.17771/PUCRio.acad.47236 |
Resumo: | [pt] Uma das principais preocupações mundiais atualmente está relacionada às questões ambientais. Essa preocupação é considerada na seleção de projetos de energia e, como resultado, a geração de energia elétrica a partir de fontes renováveis tem experimentado um forte crescimento em todo o mundo, incluindo o Brasil. Em relação às fontes de energia hidrelétrica, as Pequenas Centrais Hidrelétricas (PCHs) são uma alternativa para reduzir o impacto ambiental. Esses projetos produzem entre 5 e 30 megawatts (MW) e sua instalação tem um baixo custo e respeito ao meio ambiente, principalmente por não existir necessidade de reservatórios de regulação, o que não é o caso de grandes usinas hidrelétricas. Nos últimos anos, o número de PCHs tem aumentado bastante, como consequência dos incentivos para geração de eletricidade a partir de fontes renováveis. Como a geração de energia hidrelétrica é fortemente influenciada por regimes hidrológicos, especialmente no caso de usinas a fio d água como as PCHs, melhorar a assertividade das previsões de geração de energia elétrica de maneira estocástica torna-se altamente importante para as distribuidoras. Esta dissertação tem como principal objetivo apresentar o desempenho de um grupo de modelos de previsão aplicados para PCHs de uma distribuidora real de energia elétrica. Para isso foram utilizadas diferentes abordagens, incluindo dados de vazão de usinas hidrelétricas vizinhas como variável explicativa em modelos causais, assim como também modelos univariados. |