[pt] AGRUPAMENTO DE REGISTROS TEXTUAIS BASEADO EM SIMILARIDADE ENTRE TEXTOS
Ano de defesa: | 2016 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=25796&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=25796&idi=2 http://doi.org/10.17771/PUCRio.acad.25796 |
Resumo: | [pt] O presente trabalho apresenta os resultados que obtivemos com a aplicação de grande número de modelos e algoritmos em um determinado conjunto de experimentos de agrupamento de texto. O objetivo de tais testes é determinar quais são as melhores abordagens para processar as grandes massas de informação geradas pelas crescentes demandas de data quality em diversos setores da economia. O processo de deduplicação foi acelerado pela divisão dos conjuntos de dados em subconjuntos de itens similares. No melhor cenário possível, cada subconjunto tem em si todas as ocorrências duplicadas de cada registro, o que leva o nível de erro na formação de cada grupo a zero. Todavia, foi determinada uma taxa de tolerância intrínseca de 5 porcento após o agrupamento. Os experimentos mostram que o tempo de processamento é significativamente menor e a taxa de acerto é de até 98,92 porcento. A melhor relação entre acurácia e desempenho é obtida pela aplicação do algoritmo K-Means com um modelo baseado em trigramas. |