[en] ESSAYS IN ECONOMETRICS: ONLINE LEARNING IN HIGH-DIMENSIONAL CONTEXTS AND TREATMENT EFFECTS WITH COMPLEX AND UNKNOWN ASSIGNMENT RULES
Ano de defesa: | 2021 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=55194&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=55194&idi=2 http://doi.org/10.17771/PUCRio.acad.55194 |
Resumo: | [pt] Essa tese é composta por dois capítulos. O primeiro deles refere-se ao problema de aprendizado sequencial, útil em diversos campos de pesquisa e aplicações práticas. Exemplos incluem problemas de apreçamento dinâmico, desenhos de leilões e de incentivos, além de programas e tratamentos sequenciais. Neste capítulo, propomos a extensão de uma das mais populares regras de aprendizado, epsilon-greedy, para contextos de alta-dimensão, levando em consideração uma diretriz conservadora. Em particular, nossa proposta consiste em alocar parte do tempo que a regra original utiliza na adoção de ações completamente novas em uma busca focada em um conjunto restrito de ações promissoras. A regra resultante pode ser útil para aplicações práticas nas quais existem restrições suaves à adoção de ações não-usuais, mas que eventualmente, valorize surpresas positivas, ainda que a uma taxa decrescente. Como parte dos resultados, encontramos limites plausíveis, com alta probabilidade, para o remorso cumulativo para a regra epsilon-greedy conservadora em alta-dimensão. Também, mostramos a existência de um limite inferior para a cardinalidade do conjunto de ações viáveis que implica em um limite superior menor para o remorso da regra conservadora, comparativamente a sua versão não-conservadora. Adicionalmente, usuários finais possuem suficiente flexibilidade em estabelecer o nível de segurança que desejam, uma vez que tal nível não impacta as propriedades teóricas da regra de aprendizado proposta. Ilustramos nossa proposta tanto por meio de simulação, quanto por meio de um exercício utilizando base de dados de um problema real de sistemas de classificação. Por sua vez, no segundo capítulo, investigamos efeitos de tratamento determinísticos quando a regra de aloção é complexa e desconhecida, talvez por razões éticas, ou para evitar manipulação ou competição desnecessária. Mais especificamente, com foco na metodologia de regressão discontínua sharp, superamos a falta de conhecimento de pontos de corte na alocação de unidades, pela implementação de uma floresta de árvores de classificação, que também utiliza aprendizado sequencial na sua construção, para garantir que, assintoticamente, as regras de alocação desconhecidas sejam identificadas corretamente. A estrutura de árvore também é útil nos casos em que a regra de alocação desconhecida é mais complexa que as tradicionais univariadas. Motivado por exemplos da vida prática, nós mostramos nesse capítulo que, com alta probabilidade e baseado em premissas razoáveis, é possível estimar consistentemente os efeitos de tratamento sob esse cenário. Propomos ainda um algoritmo útil para usuários finais que se mostrou robusto para diferentes especificações e que revela com relativa confiança a regra de alocação anteriormente desconhecida. Ainda, exemplificamos os benefícios da metodologia proposta pela sua aplicação em parte do P900, um programa governamental Chileno de suporte para escolas, que se mostrou adequado ao cenário aqui estudado. |