[pt] GERAÇÃO DE DESCRIÇÕES DE PRODUTOS A PARTIR DE AVALIAÇÕES DE USUÁRIOS USANDO UM LLM

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: BRUNO FREDERICO MACIEL GUTIERREZ
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=66911&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=66911&idi=2
http://doi.org/10.17771/PUCRio.acad.66911
Resumo: [pt] No contexto de comércio eletrônico, descrições de produtos exercem grande influência na experiência de compra. Descrições bem feitas devem idealmente informar um potencial consumidor sobre detalhes relevantes do produto, esclarecendo potenciais dúvidas e facilitando a compra. Gerar boas descrições, entretanto, é uma atividade custosa, que tradicionalmente exige esforço humano. Ao mesmo tempo, existe uma grande quantidade de produtos sendo lançados a cada dia. Nesse contexto, este trabalho apresenta uma nova metodologia para a geração automatizada de descrições de produtos, usando as avaliações deixadas por usuários como fonte de informações. O método proposto é composto por três etapas: (i) a extração de sentenças adequadas para uma descrição a partir das avaliações (ii) a seleção de sentenças dentre as candidatas (iii) a geração da descrição de produto a partir das sentenças selecionadas usando um Large Language Model (LLM) de forma zero-shot. Avaliamos a qualidade das descrições geradas pelo nosso método comparando-as com descrições de produto reais postadas pelos próprios anunciantes. Nessa avaliação, contamos com a colaboração de 30 avaliadores, e verificamos que nossas descrições são preferidas mais vezes do que as descrições originais, sendo consideradas mais informativas, legíveis e relevantes. Além disso, nessa mesma avaliação replicamos um método da literatura recente e executamos um teste estatístico comparando seus resultados com o nosso método, e dessa comparação verificamos que nosso método gera descrições mais informativas e preferidas no geral.