[en] A ROBUST WORKFLOW FOR PERSON TRACKING AND META-DATA GENERATION IN VIDEOS

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: RAFAEL ANTONIO PINTO PENA
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=53394&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=53394&idi=2
http://doi.org/10.17771/PUCRio.acad.53394
Resumo: [pt] A quantidade de vídeos gravados no mundo cresce muito, não somente devido aos interesses e hábitos humanos em relação a esse tipo de mídia, mas também pela diversidade de dispositivos utilizados para criação de vídeos. No entanto, faltam informações sobre conteúdos em vídeo porque a geração de metadados é complexa e requer muito tempo para ser executado por humanos. Do ponto de vista da tecnologia, não é fácil superar os obstáculos relacionados à grande quantidade e diversidade de frames de vídeo. O trabalho propõe um sistema automatizado de reconhecimento facial para detectar personagens em vídeos. Ele foi desenvolvido para reconhecer personagens, a fim de aumentar os metadados de vídeo. Ele combina técnicas padrão de visão computacional para melhorar a precisão, processando os dados de saída dos modelos existentes de maneira complementar. O modelo teve um desempenho satisfatório usando um conjunto de dados da vida real de uma grande empresa de mídia.