Reconhecimento de movimentos de cães utilizando um acelerômetro e redes neurais artificiais

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Cocolo, Camila
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
CNN
Link de acesso: https://www.teses.usp.br/teses/disponiveis/55/55137/tde-25022021-131439/
Resumo: A classificação dos movimentos de cães utilizando dados de acelerômetro é uma área ainda pouco explorada no Brasil, mas de grande importância para o acompanhamento da saúde e bem estar destes animais. Este trabalho propõe um método de classificação de movimentação dos cães, a partir de um acelerômetro triaxial, e utilização de três arquiteturas de redes neurais artificiais: Rede Neural Convolucional (CNN), Rede Neural Convolucional associada a Long Short Term Memory (CNN-LSTM) e ConvLSTM. A metodologia foi desenvolvida instalando um pingente contendo o acelerômetro na coleira de 8 cachorros, que coletava dados em uma frequência de 10 Hz. Para avaliar o desempenho das redes neurais foi considerado o coeficiente de Matthews, que é um indicador muito utilizado na área de bioinformática. A arquitetura com melhor desempenho foi a ConvLSTM, que apresentou um coeficiente de Matthews de 0,79 no conjunto de teste.