[en] CLASSIFICATION OF OBJECTS IN REAL CONTEXT BY CONVOLUTIONAL NEURAL NETWORKS

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: LUIS MARCELO VITAL ABREU FONSECA
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=30251&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=30251&idi=2
http://doi.org/10.17771/PUCRio.acad.30251
Resumo: [pt] A classificação de imagens em contexto real é o ápice tecnológico do reconhecimento de objetos. Esse tipo de classificação é complexo, contendo diversos problemas de visão computacional em abundância. Este projeto propõe solucionar esse tipo de classificação através do uso do conhecimento no aprendizado de máquina aplicado ao dataset do MS COCO. O algoritmo implementado neste projeto consiste de um modelo de Rede Neural Convolutiva que consegue aprender características dos objetos e realizar predições sobre suas classes. São elaborados alguns experimentos que comparam diferentes resultados de predições a partir de diferentes técnicas de aprendizado. É também realizada uma comparação dos resultados da implementação com o estado da arte na segmentação de objetos em contexto.