[en] GETTING THE MOST OUT OF THE WISDOM OF THE CROWDS: IMPROVING FORECASTING PERFORMANCE THROUGH ENSEMBLE METHODS AND VARIABLE SELECTION TECHNIQUES

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: ERICK MEIRA DE OLIVEIRA
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=48429&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=48429&idi=2
http://doi.org/10.17771/PUCRio.acad.48429
Resumo: [pt] A presente pesquisa tem como foco o desenvolvimento de abordagens híbridas que combinam algoritmos de aprendizado de máquina baseados em conjuntos (ensembles) e técnicas de modelagem e previsão de séries temporais. A pesquisa também inclui o desenvolvimento de heurísticas inteligentes de seleção, isto é, procedimentos capazes de selecionar, dentre o pool de preditores originados por meio dos métodos de conjunto, aqueles com os maiores potenciais de originar previsões agregadas mais acuradas. A agregação de funcionalidades de diferentes métodos visa à obtenção de previsões mais acuradas sobre o comportamento de uma vasta gama de eventos/séries temporais. A tese está dividida em uma sequência de ensaios. Como primeiro esforço, propôsse um método alternativo de geração de conjunto de previsões, o que resultou em previsões satisfatórias para certos tipos de séries temporais de consumo de energia elétrica. A segunda iniciativa consistiu na proposição de uma nova abordagem de previsão combinando algoritmos de Bootstrap Aggregation (Bagging) e técnicas de regularização para se obter previsões acuradas de consumo de gás natural e de abastecimento de energia em diferentes países. Uma nova variante de Bagging, na qual a construção do conjunto de classificadores é feita por meio de uma reamostragem de máxima entropia, também foi proposta. A terceira contribuição trouxe uma série de inovações na maneira pela qual são conduzidas as rotinas de seleção e combinação de modelos de previsão. Os ganhos em acurácia oriundos dos procedimentos propostos são demonstrados por meio de um experimento extensivo utilizando séries das Competições M1, M3 e M4.