[en] NANOSTRUCTURE MATERIALS CONTROLLED SYNTHESIS FOR ENERGY CONVERSION APPLICATIONS

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: SCARLLETT LALESCA SANTOS DE LIMA
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=67914&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=67914&idi=2
http://doi.org/10.17771/PUCRio.acad.67914
Resumo: [pt] Diante da crise energética mundial a busca por tecnologias eficientes como substitutas aos combustíveis fósseis é cada vez mais incessante. Partindo dessa premissa, este presente trabalho aborda a síntese controlada de dois nanomateriais que foram utilizados como catalisadores para aplicações na conversão de energia. Deste modo, o primeiro trabalho descreve a síntese de nanoflores de Pd em uma única etapa de reação reduzindo o Íon Tetracloropaladato com hidroquinona. Simplesmente controlando a temperatura de reação, foi possível obter nanoflores monodispersas de Pd com formas e tamanhos bem definidos. Com base na morfologia do produto detectado, na cristalinidade e em vários experimentos de controle, foi estabelecido um novo mecanismo não clássico baseado nas teorias LaMer e DLVO. Neste procedimento, o controle da temperatura permitiu ajustar a força iônica da solução (controle da fração de íons Tetracloropaladato e K+ presentes na solução), o que afetou as etapas de fixação e agregação, levando as nanoflores de Pd com tamanhos e morfologias controlados. Quando esses nanomateriais foram empregados como nanocatalisadores para eletrooxidação de etanol, as nanoflores de Pd de 12 nm foram o melhor catalisador em termos de atividade e potencial. No segundo trabalho, foram empregados nanofios de MnO2 decorados com nanopartículas de Ir(1, 2 por cento em peso) com 1,8 ± 0,7 nm para a reação de redução do oxigênio (RRO). Foi observado que o nanohíbrido MnO2—Ir apresentou alta atividade catalítica e estabilidade melhorada para RRO em relação a Pt/C comercial (20 por cento em peso de Pt). O desempenho superior proporcionado pelo nanohíbrido MnO2—Ir pode estar relacionado (i) à concentração significativa de espécies reduzidas de Mn3+, levando ao aumento da concentração de vacâncias de oxigênio em sua superfície; (ii) a presença de fortes interações metal-suporte, nas quais o efeito eletrônico entre MnOx e Ir pode potencializar o processo RRO; e (iii) a estrutura única composta por tamanhos ultrapequenos de Ir na superfície do nanofio que permitem a exposição de superfícies/facetas de alta energia, altas relações superfície-volume e sua dispersão uniforme.