Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Yamada, Liliam Kaori |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/46/46136/tde-22032019-152421/
|
Resumo: |
Nanomateriais baseados em paládio (Pd) desempenham um papel central em catálise. Como suas prorpiedades catalíticas dependem de seus diversos parâmetros físico e químicos, a sua síntese controlada tem grande apelo com contexto do controle e otimização de performances. Nesse trabalho desenvolvemos metodologias simples, versáteis e ambientalmente amigáveis para a preparação de nanoestruturas de Pd com tamanho e forma controlada, seguida pelo seu uso como materiais de partida para a preparação de estruturas bimetálicas contendo ouro (Au) e platina (Pt). Espeficificamente, focamos em nanopartícuals (NPs) de Pd na forma de moitas, prisma e cubo côncavos. Com respeito aos materiais bimetálicos, desenvolvemos estruturas do tipo core-shell, tadpoles, e partículas de Au e Pt decoradas sobre as NPs de Pd. Seguda da síntese, estudamos a performance catalítica dos materiais obtidos frente a hidrogenação do p-nitrofenol (p-NPh) e a oxidação do p-aminotiofenol (PATP) mediada pela ressonância plasmônica de superfície (SPR). Nossos resultados mostraram que as atividades foram dependentes dos parâmetros físicos e químicos que definem as nanoestruturas e que materiais controlados tem desempenho superior ao material comercial. Acreditamos que os resultados desenvolvidos nessa tese contribuem para os mecanismos que governam a síntese controlada de NPs baseadas em Pd, Au e Pt, que pode servir como base para a descoberta de nanomateriais com maior complexidade estrutural e composicional visando aplicações em catálise e plasmônica. |