[en] ONTOLOGY-BASED DATABASE TUNING: THE CASE OF MATERIALIZED VIEWS

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: RAFAEL PEREIRA DE OLIVEIRA
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=25429&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=25429&idi=2
http://doi.org/10.17771/PUCRio.acad.25429
Resumo: [pt] O framework Outer-Tuning serve para apoiar a sintonia fina de índices (automática ou não) em um sistema de banco de dados. Trata-se de uma abordagem que oferece transparência acerca das alternativas disponíveis para possíveis cenários de sintonia fina, possibilitando combinar estratégias independentes para obter um melhor desempenho do SGBD e permitindo a discussão de justificativas para as ações realizadas. Através do uso de uma ontologia específica para sintonia fina de bancos de dados relacionais, é possível adicionar semântica ao processo com o entendimento dos conceitos envolvidos e gerar, de maneira (semi)automática, novas práticas de sintonia fina, que podem ser inferidas a partir das práticas existentes ou de novas regras e conceitos que venham a surgir no futuro. Este trabalho de pesquisa apresenta como contribuição inicial o projeto e implementação do framework Outer-Tuning por meio da formalização de uma arquitetura de software que atende aos requisitos funcionais especificados. Este trabalho também contribui com a extensão da ontologia de domínio e a inclusão de novas heurísticas na ontologia de tarefas para contemplar soluções de sintonia fina com o uso de visões materializadas. Desta forma, passa a ser possível propor o uso de heurísticas para realizar a sintonia fina tanto para índices como também para visões materializadas.