[pt] AVALIAÇÃO DE PORTFÓLIO EM GERAÇÃO TERMELÉTRICA SOB INCERTEZA: UMA METODOLOGIA HÍBRIDA UTILIZANDO NÚMEROS FUZZY, OPÇÕES REAIS E OTIMIZAÇÃO POR ALGORITMOS GENÉTICOS
Ano de defesa: | 2017 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=30498&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=30498&idi=2 http://doi.org/10.17771/PUCRio.acad.30498 |
Resumo: | [pt] Os grandes agentes do mercado de energia dedicam muitos esforços na avaliação e decisão da alocação ótima de capital para a implementação de projetos, em decorrência do grande número de projetos candidatos em seus portfólios de investimentos. Essas decisões visam escolher o subconjunto de projetos a ser implementado, pois os recursos orçamentários são geralmente menores que o necessário para a implementação de todos eles. Muitos são os riscos apresentados, e quanto mais riscos e incertezas, maiores se tornam as dificuldades de avaliação e decisões de investimento de maneira otimizada. As metodologias clássicas para avaliação de portfólios de projetos de investimento são baseadas em maximizar os retornos (VPL, TIR, etc) e minimizar o risco (desvio-padrão do VPL, variância, etc). Muitas vezes, estes métodos tradicionais de avaliação podem não conseguir tratar adequadamente as flexibilidades gerenciais (Opções Reais) características dos projetos, assim como os riscos e incertezas, devido às possíveis dificuldades de solução e modelagem matemática (multi-variáveis) dos problemas. O desenvolvimento e aplicação de modelos alternativos, tais como os baseados na Teoria de Opções Reais, inclusive com a utilização de métodos de Inteligência Computacional, podem se mostrar mais adequados para estes problemas. Nesta tese é desenvolvida uma metodologia híbrida, apresentando um modelo de Opções Reais Fuzzy para a avaliação de projetos de Revamp por um agente do mercado de Geração Termelétrica de Energia, a partir de um Portfólio de Opções Reais em ambiente de incertezas. Para a seleção do subconjunto de projetos por faixa orçamentária, é aplicado um Algoritmo Genético para otimização multi-critério, através da utilização de um índice de ponderação retorno x risco (lâmbda). |