[en] OPTIMIZATION OF GEOMETRIC RISER CONFIGURATIONS USING THE BAYESIAN OPTIMIZATION METHOD
Ano de defesa: | 2021 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=54976&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=54976&idi=2 http://doi.org/10.17771/PUCRio.acad.54976 |
Resumo: | [pt] Os risers são importantes componentes na produção e exploração de petróleo e derivados. São responsáveis pelo transporte do óleo e gás encontrados no reservatório até a Unidade Estacionária de Produção (UEP) ou pela injeção de gás ou água no reservatório. A crescente demanda por esse produto faz com que a exploração seja feita em regiões com condições cada vez mais adversas. Tipicamente, um projeto deste porte exige um número muito grande de análises numéricas de elementos finitos e exigem uma experiência grande por parte do projetista a fim de obter uma solução viável. Esse desafio leva engenheiros a buscarem ferramentas consistentes e seguras que auxiliem nas etapas iniciais do projeto das configurações de risers e que sejam capazes de diminuir o número de análises totais exigidas. Uma dessas ferramentas é a utilização de métodos de otimização para obter de maneira consistente e segura os parâmetros que definem uma configuração. Este trabalho apresenta o método de Otimização Bayesiana, um método baseado em técnicas de aprendizado de máquina capaz de resolver problemas de otimização do tipo caixa-preta de maneira eficiente explorando o uso de aproximações analíticas da função objetivo, que se quer otimizar. O método é aplicado em diferentes estudos de casos visando validálo como capaz de resolver problemas de configuração de riser de maneira eficiente e consistente. Dentre os problemas aplicados estão diferentes tipos de configurações, diferentes casos realistas, mono-objetivo e multi-objetivo. |