[en] DEEP-LEARNING-BASED SHAPE MATCHING FRAMEWORK ON 3D CAD MODELS

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: LUCAS CARACAS DE FIGUEIREDO
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=61206&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=61206&idi=2
http://doi.org/10.17771/PUCRio.acad.61206
Resumo: [pt] Modelos CAD 3D ricos em dados são essenciais durante os diferentes estágios do ciclo de vida de projetos de engenharia. Devido à recente popularização da metodologia Modelagem de Informação da Construção e do uso de Gêmeos Digitais para a manufatura inteligente, a quantidade de detalhes, o tamanho, e a complexidade desses modelos aumentaram significativamente. Apesar desses modelos serem compostos de várias geometrias repetidas, os softwares de projeto de plantas geralmente não proveem nenhuma informação de instanciação. Trabalhos anteriores demonstraram que removendo a redundância na representação dos modelos CAD 3D reduz significativamente o armazenamento e requisição de memória deles, ao passo que facilita otimizações de renderização. Este trabalho propõe um arcabouço para correspondência de formas baseado em aprendizado profundo que minimiza as informações redundantes de um modelo CAD 3D a esse respeito. Nos apoiamos nos avanços recentes no processamento profundo de nuvens de pontos, superando desvantagens de trabalhos anteriores, como a forte dependencia da ordenação dos vértices e topologia das malhas de triângulos. O arcabouço desenvolvido utiliza nuvens de pontos uniformemente amostradas para identificar similaridades entre malhas em modelos CAD 3D e computam uma matriz de transformação afim ótima para instancia-las. Resultados em modelos CAD 3D reais demonstram o valor do arcabouço proposto. O procedimento de registro de nuvem de pontos desenvolvido atinge um erro de superfície menor, ao mesmo tempo que executa mais rápido que abordagens anteriores. A abordagem supervisionada de classificação desenvolvida antinge resultados equivalentes em comparação com métodos limitados anteriores e os superou significativamente num cenário de embaralhamento de vértices. Propomos também uma abordagem auto-supervisionada que agrupa malhas semelhantes e supera a necessidade de rotular explicitamente as geometrias no modelo CAD 3D. Este método auto-supervisionado obtém resultados competitivos quando comparados às abordagens anteriores, até mesmo superando-as em determinados cenários.