[pt] PREVISÃO DA CURVA DE PRODUÇÃO PARA PROJETO EXPLORATÓRIO UTILIZANDO REDES NEURAIS ARTIFICIAIS
Ano de defesa: | 2021 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=51297&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=51297&idi=2 http://doi.org/10.17771/PUCRio.acad.51297 |
Resumo: | [pt] A estimativa de produção de petróleo é um dos parâmetros essenciais para mensurar a economicidade de um campo e, para tanto, existem várias técnicas convencionais na área da engenharia de petróleo para predizer esse cálculo. Essas técnicas abrangem desde modelos analíticos simplificados até simulações numéricas mais complexas. Este trabalho propõem o uso de Redes Neurais Artificias (RNA) para prever uma curva de produção de óleo que mais se aproxime da obtida por um simulador numérico. A metodologia consiste na utilização da rede neural do tipo feedforward para a previsão da vazão inicial e da curva de produção ao longo de dez anos para um poço produtor de óleo. Essa metodologia tem aplicação prática na área da exploração, visto que, nessa fase, ainda há muita incerteza sobre a acumulação de petróleo e, portanto, os modelos de reservatório tendem a não ser complexos. Os resultados foram obtidos a partir do treinamento de RNAs com dados coletados do simulador numérico IMEX, cujas saídas foram posteriormente comparadas com os dados originais da simulação numérica. Foi possível obter uma precisão de 97 por cento na estimativa da vazão inicial do poço produtor de óleo. A previsão da curva de produção apresentou um erro percentual médio absoluto inferior a 10 por cento nos dois primeiros anos. Apesar dos valores de erro terem crescido ao longo dos últimos anos, eles são menores quando comparados com a metodologia de declínio exponencial e com a regressão linear múltipla. |