Detalhes bibliográficos
Ano de defesa: |
2001 |
Autor(a) principal: |
Santos, Cláudia Cristina dos |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/3/3147/tde-14122001-132951/
|
Resumo: |
Redes Neurais Artificiais (RNA's) vem sendo utilizada em diversas áreas do conhecimento inclusive para a previsão de séries temporais. O objetivo deste trabalho é utilizar uma RNA para o diagnóstico e prognóstico de vazão em bacias urbanas da Região Metropolitana de São Paulo (RMSP) com dados do radar meteorológio de São Paulo e os dados telemétricos da bacia do Alto Tietê. Uma RNA do tipo feedforward multicamadas, com aprendizado supervisionado e com o algoritmo de treinamento Linear Least Square SIMplex (LLSSIM, Hse et al. 1996) foram aplicados à bacia do Rio Tamanduateí. Dividiu-se os eventos disponíveis em três grupos; para o treinamento, verificação e previsão ideal com a RNA. Realizou o treinamento e verificação da rede com dados de vazão estimada e nível medido. Os erros de fase e amplitude foram utilizados para avaliar o desempenho da rede em cada uma das configurações empregadas. Estes indicam a importância da memória da bacia para o bom desempenho da RNA. Verifica-se também que nem sempre o aumento do número de camadas escondidas melhoram os resultados, bem como o aumento da quantidade de dados. Comparou-se ainda a performance da RNA contra um modelo auto regressivo sendo a primeira menos dependente da memória da bacia. Por último, realizou previsões do tipo ideal com resultados satisfatórios até 1 hora e 30 minutos de antecedência. Além deste período os erros crescem exponencialmente. |