[pt] MINERAÇÃO DE ITENS FREQUENTES EM SEQUÊNCIAS DE DADOS: UMA IMPLEMENTAÇÃO EFICIENTE USANDO VETORES DE BITS

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: FRANKLIN ANDERSON DE AMORIM
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=25748&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=25748&idi=2
http://doi.org/10.17771/PUCRio.acad.25748
Resumo: [pt] A mineração de conjuntos de itens frequentes em sequências de dados possui diversas aplicações práticas como, por exemplo, análise de comportamento de usuários, teste de software e pesquisa de mercado. Contudo, a grande quantidade de dados gerada pode representar um obstáculo para o processamento dos mesmos em tempo real e, consequentemente, na sua análise e tomada de decisão. Sendo assim, melhorias na eficiência dos algoritmos usados para estes fins podem trazer grandes benefícios para os sistemas que deles dependem. Esta dissertação apresenta o algoritmo MFI-TransSWmais, uma versão otimizada do algoritmo MFI-TransSW, que utiliza vetores de bits para processar sequências de dados em tempo real. Além disso, a dissertação descreve a implementação de um sistema de recomendação de matérias jornalísticas, chamado ClickRec, baseado no MFI-TransSWmais, para demonstrar o uso da nova versão do algoritmo. Por último, a dissertação descreve experimentos com dados reais e apresenta resultados da comparação de performance dos dois algoritmos e dos acertos do sistema de recomendações ClickRec.