[en] AUTOMFIS: A FUZZY SYSTEM FOR MULTIVARIATE TIME SERIES FORECAST
Ano de defesa: | 2016 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=26101&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=26101&idi=2 http://doi.org/10.17771/PUCRio.acad.26101 |
Resumo: | [pt] A série temporal é a representação mais comum para a evoluçãao no tempo de uma variável qualquer. Em um problema de previsão de séries temporais, procura-se ajustar um modelo para obter valores futuros da série, supondo que as informações necessárias para tal se encontram no próprio histórico da série. Como os fenômenos representados pelas séries temporais nem sempre existem de maneira isolada, pode-se enriquecer o modelo com os valores históricos de outras séries temporais relacionadas. A estrutura formada por diversas séries de mesmo intervalo e dimensão ocorrendo paralelamente é denominada série temporal multivariada. Esta dissertação propõe uma metodologia de geração de um Sistema de Inferência Fuzzy (SIF) para previsão de séries temporais multivariadas a partir de dados históricos, com o objetivo de obter bom desempenho tanto em termos de acurácia de previsão como no quesito interpretabilidade da base de regras – com o intuito de extrair conhecimento sobre o relacionamento entre as séries. Para tal, são abordados diversos aspectos relativos ao funcionamento e à construção de um SIF, levando em conta a sua complexidade e claridade semântica. O modelo é avaliado por meio de sua aplicação em séries temporais multivariadas da base completa da competição M3, comparandose a sua acurácia com as dos métodos participantes. Além disso, através de dois estudos de caso com dados reais públicos, suas possibilidades de extração de conhecimento são exploradas por meio de dois estudos de caso construídos a partir de dados reais. Os resultados confirmam a capacidade do AutoMFIS de modelar de maneira satisfatória séries temporais multivariadas e de extrair conhecimento da base de dados. |