[en] ADVANCED ESTIMATION AND CONTROL APPLIED TO VEHICLE DYNAMIC SYSTEMS
Ano de defesa: | 2022 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=58727&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=58727&idi=2 http://doi.org/10.17771/PUCRio.acad.58727 |
Resumo: | [pt] A crescente demanda por sistemas de transporte autônomos e inteligentes exige o desenvolvimento de técnicas avançadas de controle e estimativa, visando garantir operações seguras e eficientes. Devido à natureza não linear da dinâmica veicular e seus fenômenos característicos, os métodos clássicos de estimativa e controle podem não alcançar resultados adequados, o que incentiva a pesquisa de novos algoritmos. Por algumas contribuições, a primeira parte deste trabalho trata de algoritmos de estimação, tanto para identificação de parâmetros invariantes no tempo, quanto para estimação de estados e parâmetros variantes no tempo. Especial destaque é dados aos algoritmos de Estimação de Estados por Horizonte Móvel (MHSE), que se apresenta como robusto e preciso, devido ao problema de otimização com restrição em que se baseia. Este algoritmo é avaliado em dinâmica longitudinal de veículos, para estimativa de deslizamento longitudinal e coeficiente de atrito pneu-estrada. Apesar de sua eficiência, o alto custo computacional torna necessária a busca por alternativas sub-ótimas, e o emprego de Redes Neurais que mapeiam os resultados da otimização é uma solução promissora, que é tratada como Estimação por Horizonte Móvel com Redes Neurais (NNMHE). O NNMHE é avaliado em uma estimativa do estado de carga (SOC) de baterias para veículos elétricos, demonstrando, através de dados experimentais, que o NNMHE emula com precisão o problema de otimização e a literatura indica sua aplicação efetiva em hardwares embarcados. Por fim, é apresentada uma contribuição sobre o controle preditivo baseado em modelo não linear (NMPC). É proposto e avaliado seu uso compondo uma nova estrutura de controle hierárquica para veículos elétricos com motores independentes nas rodas, através do qual é possível controlar adequadamente o veículo em tarefas de rastreamento de velocidade e trajetória, com reduzido esforço computacional. O controle é avaliado usando dados experimentais de pneus obtidos, que aproximam a simulação de situações reais. |