[en] INTERIMAGE CLOUD PLATFORM: THE ARCHITECTURE OF A DISTRIBUTED PLATFORM FOR AUTOMATIC, OBJECT-BASED IMAGE INTERPRETATION

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: RODRIGO DA SILVA FERREIRA
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=26196&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=26196&idi=2
http://doi.org/10.17771/PUCRio.acad.26196
Resumo: [pt] O objetivo genérico desta tese foi o desenvolvimento de uma arquitetura computacional distribuída para a interpretação automática, baseada em objetos, de grandes volumes de dados de imagem de sensoriamento remoto, com foco na distribuição de dados e processamento em um ambiente de computação em nuvem. Dois objetivos específicos foram perseguidos: (i) o desenvolvimento de uma nova arquitetura distribuída para análise de imagens que é capaz de lidar com vetores e imagens ao mesmo tempo; e (ii) a modelagem e implementação de uma plataforma distribuída para a interpretação de grandes volumes de dados de sensoriamento remoto. Para validar a nova arquitetura, foram realizados experimentos com dois modelos de classificação – um de cobertura da terra e outro de uso do solo – sobre uma imagem QuickBird de uma área do município de São Paulo. Os modelos de classificação, propostos por Novack (Novack09), foram recriados usando as estruturas de representação do conhecimento da nova plataforma. Nos experimentos executados, a plataforma foi capaz de processar todo o modelo de classificação de cobertura da terra para uma imagem de 32.000x32.000 pixels (aproximadamente 3,81 GB), com aproximadamente 8 milhões de objetos de imagem (aproximadamente 23,2 GB), em apenas 1 hora, utilizando 32 máquinas em um serviço de nuvem comercial. Resultados igualmente interessantes foram obtidos para o modelo de classificação de uso do solo. Outra possibilidade de paralelismo oferecida pelas estruturas de representação de conhecimento da plataforma também foi avaliada.