[en] OBJECT RECOGNITION SYSTEM IN DIGITAL VIDEOS FOR INTERACTIVE APPLICATIONS

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: GUSTAVO COSTA GOMES MOREIRA
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=13069&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=13069&idi=2
http://doi.org/10.17771/PUCRio.acad.13069
Resumo: [pt] Detecção e reconhecimento de objetos são uma questão importante na área de Visão Computacional, onde a sua realização em tempo real e com taxas baixas de falsos positivos tem se tornado o objetivo principal de inúmeras pesquisas, inclusive daquelas relacionadas às novas formas de interatividade na TV Digital. Esta dissertação propõe um sistema de software baseado em aprendizado de máquina que permite um treinamento eficiente para novos objetos e realiza o subseqüente reconhecimento destes objetos em tempo real, tanto para imagens estáticas como para vídeos digitais. O sistema é baseado no uso de características Haar do objeto, que requerem um baixo tempo de computação para o seu cálculo, e na utilização de classificadores em cascata, que permitem tanto um rápido descarte de áreas da imagem que não possuem o objeto de interesse, quanto uma baixa ocorrência de falsos positivos. Por meio do uso de técnicas de segmentação de imagem, o sistema torna a busca por objetos uma operação extremamente rápida em vídeos de alta resolução. Além disto, com a utilização de técnicas de paralelismo, pode-se detectar vários objetos simultaneamente sem perda de desempenho.