[en] AN APPROACH BASED ON INTERACTIVE MACHINE LEARNING AND NATURAL INTERACTION TO SUPPORT PHYSICAL REHABILITATION

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: JESSICA MARGARITA PALOMARES PECHO
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=54139&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=54139&idi=2
http://doi.org/10.17771/PUCRio.acad.54139
Resumo: [pt] A fisioterapia visa melhorar a funcionalidade física das pessoas, procurando atenuar as incapacidades causadas por alguma lesão, distúrbio ou doença. Nesse contexto, diversas tecnologias computacionais têm sido desenvolvidas com o intuito de apoiar o processo de reabilitação, como as tecnologias adaptáveis para o usuário final. Essas tecnologias possibilitam ao fisioterapeuta adequar aplicações e criarem atividades com características personalizadas de acordo com as preferências e necessidades de cada paciente. Nesta tese é proposta uma abordagem de baixo custo baseada no aprendizado de máquina interativo (iML - Interactive Machine Learning) que visa auxiliar os fisioterapeutas a criarem atividades personalizadas para seus pacientes de forma fácil e sem a necessidade de codificação de software, a partir de apenas alguns exemplos em vídeo RGB (capturadas por uma câmera de vídeo digital) Para tal, aproveitamos a estimativa de pose baseada em aprendizado profundo para rastrear, em tempo real, as articulações-chave do corpo humano a partir de dados da imagem. Esses dados são processados como séries temporais por meio do algoritmo Dynamic Time Warping em conjunto com com o algoritmo K-Nearest Neighbors para criar um modelo de aprendizado de máquina. Adicionalmente, usamos um algoritmo de detecção de anomalias com o intuito de avaliar automaticamente os movimentos. A arquitetura de nossa abordagem possui dois módulos: um para o fisioterapeuta apresentar exemplos personalizados a partir dos quais o sistema cria um modelo para reconhecer esses movimentos; outro para o paciente executar os movimentos personalizados enquanto o sistema avalia o paciente. Avaliamos a usabilidade de nosso sistema com fisioterapeutas de cinco clínicas de reabilitação. Além disso, especialistas avaliaram clinicamente nosso modelo de aprendizado de máquina. Os resultados indicam que a nossa abordagem contribui para avaliar automaticamente os movimentos dos pacientes sem monitoramento direto do fisioterapeuta, além de reduzir o tempo necessário do especialista para treinar um sistema adaptável.