[pt] EFEITO DA ESTIMAÇÃO DOS PARÂMETROS SOBRE O DESEMPENHO CONJUNTO DOS GRÁFICOS DE CONTROLE DE X-BARRA E S
Ano de defesa: | 2020 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=48938&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=48938&idi=2 http://doi.org/10.17771/PUCRio.acad.48938 |
Resumo: | [pt] A probabilidade de alarme falso, alfa, dos gráficos de controle de processos depende dos seus limites de controle, que, por sua vez, dependem de estimativas dos parâmetros do processo. Esta tese apresenta inicialmente uma revisão dos principais trabalhos sobre o efeito dos erros de estimação dos parâmetros do processo sobre alfa quando se utiliza o gráfico de X e S individualmente e em conjunto. O desempenho dos gráficos é medido através de medidas de desempenho (número médio de amostras até o sinal, taxa de alarme falso, distribuição do número de amostras até o sinal, que, em geral, são variáveis aleatórias, função dos erros de estimação. Pesquisas recentes têm focado nas propriedades da distribuição condicional do número de amostras até o sinal, ou ainda, nas propriedades da distribuição da taxa de alarme-falso condicional. Esta tese adota esta abordagem condicional e analisa o efeito da estimação dos parâmetros do processo no desempenho conjunto dos gráficos de X e S em dois casos: Caso KU (Média conhecida – Variância desconhecida) e Caso UU (Média desconhecida – Variância desconhecida). A quase totalidade dos trabalhos anteriores considerou apenas um gráfico, isoladamente; sobre efeito da estimação dos parâmetros sobre o desempenho conjunto conhecemos apenas um trabalho, sobre gráficos de X e R, mas nenhum sobre gráficos de X e S. Os resultados da análise mostram que o desempenho dos gráficos pode ser muito afetado pela estimação de parâmetros e que o número de amostras iniciais requerido para garantir um desempenho desejado é muito maior que os números tradicionalmente recomendados na literatura normativa de controle estatístico de processo (livros texto e manuais). Esse número é, porém, menor que o máximo entre os números requeridos para os gráficos de X e de S individualmente. Questões a serem investigadas como desdobramento dessa pesquisa são também indicadas nas Considerações Finais e Recomendações. |