Monitoramento de processo seis sigma por gráficos de controle de Shewhart
Ano de defesa: | 2013 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Viçosa
BR Estatística Aplicada e Biometria Mestrado em Estatística Aplicada e Biometria UFV |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://locus.ufv.br/handle/123456789/4073 |
Resumo: | Desenvolvida em 1987 na Motorola, a metodologia Seis Sigma busca, mediante redução na variabilidade dos processos-chave, obter características críticas para a qualidade (CTQs) com probabilidades de defeitos próximas de zero. Tem-se um processo Seis Sigma quando a distância entre o valor-alvo (VN) da CTQ e o limite de especificação mais próximo for igual ou superior a seis desvios-padrão (σ). Na prática, por maior que seja a atenção dispensada ao processo, a média da distribuição de probabilidades da CTQ pode deslocar em até 1,5σ do valor-alvo, que ainda assim o processo será considerado Seis Sigma. Então existe um intervalo de 4,5 a 6σ, no qual o processo pode variar sem que perca o nível de qualidade considerado de classe mundial . Desta forma, neste trabalho, buscou-se estabelecer recomendações para o planejamento de gráficos de controle de Shewhart ̅ e R para o monitoramento de processos Seis Sigma. Para tanto, estabeleceu-se um desempenho de referência no qual se admitiu a probabilidade do alarme falso conjunto igual ou inferior a 0,01; e a probabilidade do alarme verdadeiro conjunto crescendo de acordo com a redução do nível Sigma do processo, passando de 0 em processos 6σ para 0,10 naqueles 5σ, atingindo 0,90 em processos 4,5σ até atingir a unidade para processos 3σ e inferiores. Nesse sentido, investigou-se planejamentos com combinações entre n = 2, 3, 4 e 5 e k = 2,5, 2,6, 2,7, 2,8, 2,9 e 3,0. Identificou-se que o par de gráficos em questão apresentou bom desempenho quando o processo esteve sob efeito somente do deslocamento da média e perdeu desempenho à medida que ocorreu o aumento da variação como única perturbação ou quando as duas anomalias estiveram atuando. Foi possível identificar que o deslocamento da média é o problema mais observado, a ocorrência simultânea das duas anomalias é menos frequente e a presença exclusiva do aumento da variação é rara. Logo, recomendou-se o planejamento com n = 5 e k = 2,9, para o monitoramento de processos Seis Sigma Práticos (isto é, com nível sigma entre 4,5 e 6σ), que apresentou bom desempenho apenas quando o processo esteve principalmente sob efeito do deslocamento da média. Portanto, é provável que o nível de qualidade dos processos caia sem que os gráficos de controle em questão sinalizem a perda da qualidade em função do aumento da variação, com ou sem a presença do deslocamento da média. |