[pt] AUTOMORFISMOS GENÉRICOS DE CUBOS COM ALÇAS

Detalhes bibliográficos
Ano de defesa: 2003
Autor(a) principal: LEONARDO NAVARRO DE CARVALHO
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=3970&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=3970&idi=2
http://doi.org/10.17771/PUCRio.acad.3970
Resumo: [pt] Automorfismos genéricos de cubos com alças (handlebodies) aparecem do estudo de classes the isotopia de automorfismos de variedades orientáveis de dimensão três. Automorfismos genéricos permanecem como uma das partes menos entendidas desse estudo.Dado um automorfismo genérico de um cubo com alças, é conhecida uma forma de se construir uma laminação bidimensional que é invariante pelo automorfismo. A essa laminação se associa um fator de crescimento. É sabido que, no caso de tal fator de crescimento ser minimal - uma característica importante, pois mede a complexidade essencial do automorfismo - a laminação deve gozar de uma certa propriedade de incompressibilidade. Nessa tese mostramos que o processo de se achar uma laminação com tal propriedade é algoritmico. Por outro lado, mostramos que tal propriedade não garante que o respectivo fator de crescimento seja minimal. Propomos uma outra propriedade, tensão transversal, mais forte que incompressibilidade, que conjecturamos também ser condição necessária para que o fator de crescimento seja minimal. Provamos a conjectura em alguns casos.Além dos resultados mencionados acima, desenvolvemos métodos para gerar automorfismos genéricos de cubos com alcas, que usamos para apresentar alguma variedade de exemplos.