[pt] ANÁLISE DE SÉRIES TEMPORAIS USANDO ANÁLISE ESPECTRAL SINGULAR (SSA) E CLUSTERIZAÇÃO DE SUAS COMPONENTES BASEADA EM DENSIDADE

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: KEILA MARA CASSIANO
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=24787&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=24787&idi=2
http://doi.org/10.17771/PUCRio.acad.24787
Resumo: [pt] Esta tese propõe a utilização do DBSCAN (Density Based Spatial Clustering of Applications with Noise) para separar os componentes de ruído na fase de agrupamento das autotriplas da Análise Singular Espectral (SSA) de Séries Temporais. O DBSCAN é um método moderno de clusterização (revisto em 2013) e especialista em identificar ruído através de regiões de menor densidade. O método de agrupamento hierárquico até então é a última inovação na separação de ruído na abordagem SSA, implementado no pacote R- SSA. No entanto, o método de agrupamento hierárquico é muito sensível a ruído, não é capaz de separá-lo corretamente, não deve ser usado em conjuntos com diferentes densidades e não funciona bem no agrupamento de séries temporais de diferentes tendências, ao contrário dos métodos de aglomeração à base de densidade que são eficazes para separar o ruído a partir dos dados e dedicados para trabalhar bem em dados a partir de diferentes densidades. Este trabalho mostra uma melhor eficiência de DBSCAN sobre os outros métodos já utilizados nesta etapa do SSA, garantindo considerável redução de ruídos e proporcionando melhores previsões. O resultado é apoiado por avaliações experimentais realizadas para séries simuladas de modelos estacionários e não estacionários. A combinação de metodologias proposta também foi aplicada com sucesso na previsão de uma série real de velocidade do vento.