[pt] IDENTIFICANDO PREOCUPAÇÕES AO ESPECIFICAR SISTEMAS COM COMPONENTES DE APRENDIZADO DE MÁQUINA: UMA ABORDAGEM BASEADA EM PERSPECTIVA

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: HUGO RICARDO GUARIN VILLAMIZAR
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=65972&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=65972&idi=2
http://doi.org/10.17771/PUCRio.acad.65972
Resumo: [pt] A engenharia de sistemas habilitados em Machine Learning (ML) bem-sucedidos apresenta vários desafios, tanto do lado teórico quanto prático. Entre esses desafios estão como abordar eficazmente às expectativas irrealistas das capacidades de ML por parte de clientes, gestores e até mesmo outros membros da equipe de desenvolvimento, e como ligar o valor do negócio às atividades de engenharia e ciência de dados compostas por equipes interdisciplinares. Nesta tese, estudamos o estado da prática e da literatura da engenharia de requisitos para ML para propor PerSpecML, uma abordagem baseada em perspectiva para especificar sistemas habilitados para ML que ajuda os profissionais a identificar quais atributos, incluindo componentes de ML e não-ML, são importantes para contribuir para a qualidade geral do sistema. A abordagem envolve a análise de 60 preocupações relacionadas a 28 tarefas que os profissionais normalmente enfrentam em projetos de ML, agrupando-as em cinco perspectivas: objetivos do sistema, experiência do usuário, infraestrutura, modelo e dados. Juntas, essas perspectivas servem para mediar a comunicação entre gestores de projeto, especialistas de domínio, designers, engenheiros de software/ML e cientistas de dados. A criação da PerSpecML envolveu uma série de validações realizadas em diferentes contextos: (i) na academia, (ii) com representantes da indústria e (iii) em dois estudos de casos industriais reais. Como resultado das diversas validações e melhorias contínuas, PerSpecML se destaca como uma abordagem promissora, preparada para impactar positivamente a especificação de sistemas habilitados para ML, ajudando particularmente a revelar componentes-chave que, de outra forma, teriam sido perdidos sem o uso da PerSpecML.