[pt] ENGENHARIA DE REQUISITOS PARA SISTEMAS INTEGRADOS COM COMPONENTES DE APRENDIZADO DE MÁQUINA: STATUS QUO E PROBLEMA
Ano de defesa: | 2024 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=65995&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=65995&idi=2 http://doi.org/10.17771/PUCRio.acad.65995 |
Resumo: | [pt] Sistemas que usam Aprendizado de Máquina, doravante Machine Learning (ML), tornaram-se comuns para empresas que deseajam melhorar seus produtos, serviços e processos. A literatura sugere que a Engenharia de Requisitos (ER) pode ajudar a explicar muitos problemas relacionados à engenharia de sistemas inteligentes envolvendo componentes de ML (ML-Enabled Systems). Contudo, o cenário atual de evidências empíricas sobre como ER é aplicado na prática no contexto desses sistemas é amplamente dominado por estudos de casos isolados com pouca generalização. Nós conduzimos um survey internacional para coletar informações de profissionais sobre o status quo e problemas de ER para ML-Enabled Systems. Coletamos 188 respostas completas de 25 países. Realizamos uma análise quantitativa sobre as práticas atuais utilizando bootstrapping com intervalos de confiança; e análises qualitativas sobre os problemas reportados através de procedimentos de codificação open e axial. Encontramos diferenças significativas nas práticas de ER no contexto de projetos de ML, algumas já reportadas na literatura e outras totalmente novas. Por exemplo, (i) atividades relacionadas à ER são predominantemente conduzidas por líderes de projeto e cientistas de dados, (ii) o formato de documentação predominante é baseado em Notebooks interativos, (iii) os principais requisitos não-funcionais incluem qualidade dos dados, confiança e explicabilidade no modelo, e (iv) os principais desafios consistem em gerenciar a expectativa dos clientes e alinhar requisitos com os dados disponíveis. As análises qualitativas revelaram que os praticantes enfrentam problemas relacionados ao baixo entendimento sobre o domínio do negócio, requisitos pouco claros e baixo engajamento do cliente. Estes resultados ajudam a melhorar o entendimento sobre práticas adotadas e problemas existentes em cenários reais. Destacamos a necessidade para adaptar ainda mais e disseminar práticas de ER relacionadas à engenharia de ML-Enabled Systems. |