[pt] DINÂMICA DE LINHAS MARÍTIMAS PELO MÉTODO DOS ELEMENTOS FINITOS
Ano de defesa: | 2016 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=26484&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=26484&idi=2 http://doi.org/10.17771/PUCRio.acad.26484 |
Resumo: | [pt] Este trabalho apresenta uma abordagem pelo método dos elementos finitos para o cálculo da resposta tridimensional, estática e dinâmica, de estruturas unidimensionais total ou parcialmente imersas em um fluido em movimento. A técnica utilizada baseia-se na separação do movimento de corpo rígido dos deslocamentos totais do elemento resultando naqueles que efetivamente causam deformações, consideradas infinitesimais, sob condições de rotações finitas. A posição da estrutura é definida por um conjunto de eixos co-rotacionados e a avaliação das rotações deste sistema é detalhada. O estudo apresentado considera as não-linearidades decorrentes da mudança de geometria, do acoplamento entre os mecanismos de rigidez axial e transversal e do carregamento hidrodinâmico, considerado proporcional ao quadrado da velocidade relativa entre fluido e estrutura. Na discretização espacial das equações de equilíbrio, a hipótese de pequenas deformações é empregada. Desta forma, a utilização do sistema de coordenada co-rotacionado permite considerar-se um elemento de dois nós baseado no modelo de viga de Euler-Bernoulli com funções de interpolação dos deslocamentos nodais utilizando os polinômios cúbicos de Hermite e referidos ao sistema convectivo de cada elemento. Na integração temporal das equações de equilíbrio, utiliza-se o procedimento passo-a-passo de Newmark juntamente com a técnica iterativa de Newton-Raphson, obtendo-se, a cada instante de tempo, a configuração correspondente ao equilíbrio dinâmico da estrutura discretizada. O procedimento apresentado foi implementado em um programa de computador tendo-se verificado, para diversos exemplos, uma convergência satisfatória entre os resultados do modelo implementado e aqueles obtidos de outros com origem independente. |