[en] ASSESSING THE BENEFITS OF MLOPS FOR SUPERVISED ONLINE REGRESSION MACHINE LEARNING
Ano de defesa: | 2023 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=64505&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=64505&idi=2 http://doi.org/10.17771/PUCRio.acad.64505 |
Resumo: | [pt] Contexto: As operações de aprendizagem automática (MLOps) surgiram como um conjunto de práticas que combina desenvolvimento, testes e operações para implementar e manter aplicações de aprendizagem automática. Objetivo: Nesta dissertação, iremos avaliar os benefícios e limitações da utilização dos princípios de MLOps no contexto de modelos supervisionados online, que são amplamente utilizados em aplicações como a previsão meteorológica, tendências de mercado e identificação de riscos. Método: Aplicámos dois métodos de investigação para avaliar os benefícios dos MLOps para aplicações de aprendizagem automática online supervisionada: (i) desenvolvimento de um projeto prático de aprendizagem automática supervisionada para aprofundar a compreensão do problema e das possibilidades de utilização dos princípios MLOps; e (ii) duas discussões de grupo de foco sobre os benefícios e limitações da utilização dos princípios MLOps com seis programadores de aprendizagem automática experientes. Resultados: O projeto prático implementou uma aplicação de aprendizagem automática de regressão supervisionada utilizando KNN. A aplicação utiliza informações sobre as rotas das linhas de autocarros públicos do Rio de Janeiro e calcula a duração da viagem de autocarro com base na hora de partida do dia e no sentido da viagem. Devido ao âmbito da primeira versão e ao facto de não ter sido implementada em produção, não sentimos a necessidade de utilizar os princípios MLOps que esperávamos inicialmente. De facto, identificámos a necessidade de apenas um princípio, o princípio do controlo de versões, para alinhar as versões do código e dos dados. O grupo de discussão revelou que os programadores de aprendizagem automática acreditam que os benefícios da utilização dos princípios MLOps são muitos, mas que não se aplicam a todos os projectos em que trabalham. A discussão revelou que a maioria dos benefícios está relacionada com a prevenção de passos manuais propensos a erros, permitindo restaurar a aplicação para um estado anterior e ter um pipeline robusto de implementação automatizada contínua. Conclusões: É importante equilibrar as compensações do investimento de tempo e esforço na implementação dos princípios de MLOps, considerando o âmbito e as necessidades do projeto. De acordo com os especialistas, esse investimento tende a compensar para aplicativos maiores com implantação contínua que exigem processos automatizados bem preparados. Por outro lado, para versões iniciais de aplicações de aprendizagem automática, o esforço despendido na implementação dos princípios pode alargar o âmbito do projeto e aumentar o tempo de execução. |