[en] ASSESSING THE BENEFITS OF MLOPS FOR SUPERVISED ONLINE REGRESSION MACHINE LEARNING

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: GABRIEL DE ARAUJO CARVALHO
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=64505&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=64505&idi=2
http://doi.org/10.17771/PUCRio.acad.64505
Resumo: [pt] Contexto: As operações de aprendizagem automática (MLOps) surgiram como um conjunto de práticas que combina desenvolvimento, testes e operações para implementar e manter aplicações de aprendizagem automática. Objetivo: Nesta dissertação, iremos avaliar os benefícios e limitações da utilização dos princípios de MLOps no contexto de modelos supervisionados online, que são amplamente utilizados em aplicações como a previsão meteorológica, tendências de mercado e identificação de riscos. Método: Aplicámos dois métodos de investigação para avaliar os benefícios dos MLOps para aplicações de aprendizagem automática online supervisionada: (i) desenvolvimento de um projeto prático de aprendizagem automática supervisionada para aprofundar a compreensão do problema e das possibilidades de utilização dos princípios MLOps; e (ii) duas discussões de grupo de foco sobre os benefícios e limitações da utilização dos princípios MLOps com seis programadores de aprendizagem automática experientes. Resultados: O projeto prático implementou uma aplicação de aprendizagem automática de regressão supervisionada utilizando KNN. A aplicação utiliza informações sobre as rotas das linhas de autocarros públicos do Rio de Janeiro e calcula a duração da viagem de autocarro com base na hora de partida do dia e no sentido da viagem. Devido ao âmbito da primeira versão e ao facto de não ter sido implementada em produção, não sentimos a necessidade de utilizar os princípios MLOps que esperávamos inicialmente. De facto, identificámos a necessidade de apenas um princípio, o princípio do controlo de versões, para alinhar as versões do código e dos dados. O grupo de discussão revelou que os programadores de aprendizagem automática acreditam que os benefícios da utilização dos princípios MLOps são muitos, mas que não se aplicam a todos os projectos em que trabalham. A discussão revelou que a maioria dos benefícios está relacionada com a prevenção de passos manuais propensos a erros, permitindo restaurar a aplicação para um estado anterior e ter um pipeline robusto de implementação automatizada contínua. Conclusões: É importante equilibrar as compensações do investimento de tempo e esforço na implementação dos princípios de MLOps, considerando o âmbito e as necessidades do projeto. De acordo com os especialistas, esse investimento tende a compensar para aplicativos maiores com implantação contínua que exigem processos automatizados bem preparados. Por outro lado, para versões iniciais de aplicações de aprendizagem automática, o esforço despendido na implementação dos princípios pode alargar o âmbito do projeto e aumentar o tempo de execução.