[en] CONTINUOUS SPEECH RECOGNITION WITH MFCC, SSCH AND PNCC FEATURES, WAVELET DENOISING AND NEURAL NETWORKS

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: JAN KRUEGER SIQUEIRA
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=19143&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=19143&idi=2
http://doi.org/10.17771/PUCRio.acad.19143
Resumo: [pt] Um dos maiores desafios na área de reconhecimento de voz contínua é desenvolver sistemas robustos ao ruído aditivo. Para isso, este trabalho analisa e testa três técnicas. A primeira delas é a extração de atributos do sinal de voz usando os métodos MFCC, SSCH e PNCC. A segunda é a remoção de ruído do sinal de voz via wavelet denoising. A terceira e última é uma proposta original batizada de feature denoising, que busca melhorar os atributos extraídos usando um conjunto de redes neurais. Embora algumas dessas técnicas já sejam conhecidas na literatura, a combinação entre elas trouxe vários resultados interessantes e inéditos. Inclusive, nota-se que o melhor desempenho vem da união de PNCC com feature denoising.