[en] A BOUNDARY ELEMENT IMPLEMENTATION FOR FRACTURE MECHANICS PROBLEMS USING GENERALIZED WESTERGAARD STRESS FUNCTIONS
Ano de defesa: | 2019 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=36545&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=36545&idi=2 http://doi.org/10.17771/PUCRio.acad.36545 |
Resumo: | [pt] No método dos elementos de contorno tradicional, a modelagem numérica de trincas é usualmente realizada por meio de uma solução fundamental hipersingular. Um procedimento mais natural seria utilizar uma solução fundamental capaz de representar a singularidade 1/raiz quadrada r que surge quando se analisa o campo de tensões próximo à ponta da trinca. Esta representação já foi realizada por Dumont e Lopes em 2003, com alguns refinamentos conseguidos por Dumont e Mamani em 2011, numa formulação do Método Híbrido de Elementos de Contorno, onde as soluções fundamentais são desenvolvidas a partir de funções de tensão generalizadas do tipo Westergaard para problemas de trincas com deslocamento prescrito, conforme proposto por Tada et al, em 1993. O presente trabalho, que é uma continuação das pesquisas de Dumont e Mamani, realiza um estudo sobre o uso destas funções generalizadas para a representação de grandezas na ponta da trinca em problemas de elasticidade e potencial. Os resultados obtidos são comparados conceitualmente com os desenvolvimentos clássicos de Westergaard e Williams. Também foram analisados alguns resultados com funções de tensão generalizadas de trinca com abertura semielíptica e polinomiais, além do uso de funções que representam a rotação relativa das faces da trinca. Além disso, é apresentada a aplicação da função de tensão de Westergaard generalizada como solução fundamental do método dos Elementos de Contorno Convencional, mais especificamente para a obtenção da matriz G do sistema, uma vez que a matriz H já foi desenvolvida, em trabalhos anteriores, com bons resultados. São apresentados alguns exemplos numéricos de aplicação para contornos externos, furos e trincas. |