[en] CONVENTIONAL AND SIMPLIFIED-HYBRID BOUNDARY ELEMENT METHODS APLLIED TO AXISYMMETRIC ELASTICITY PROBLEMS IN FULLSPACE AND HALFSPACE
Ano de defesa: | 2010 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=15180&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=15180&idi=2 http://doi.org/10.17771/PUCRio.acad.15180 |
Resumo: | [pt] Esta tese apresenta as formulações dos métodos de elementos de contorno convencional e híbrido simplificado para problemas axissimétricos de elasticidade, empregando-se as soluções fundamentais do espaço completo e do semi-espaço. Para problemas de elasticidade axissimétricos no semi-espaço pelos métodos de elementos de contorno, o uso das soluções fundamentais para espaço completo exige a discretização e o truncamento da superfície livre. No entanto, essa discretização é dispensada se as soluções fundamentais empregadas satisfizerem a condição de forças de superfície nulas. Este trabalho apresenta a implementação dessas soluções fundamentais axissimétricas para o espaço completo e o semi-espaço elástico, em termos de integrais do tipo Lipschitz-Hankel. São apresentadas todas as expressões necessárias para o cálculo de resultados em pontos internos e a correta integração numérica das integrais de contorno. Partindo da formulação do espaço completo, mostra-se que é necessária pouca modificação para a implementação da formulação proposta. Esse trabalho também desenvolve a formulação axissimétrica para o método híbrido simplificado dos elementos de contorno, tanto para o espaço completo como para o semi-espaço. Na sua versão original, o uso de propriedades espectrais para a total formulação do problema não era possível para certas configurações topológicas. No entanto, a aplicação de um princípio de contragradiência híbrida às equações do método levou à obtenção de uma nova relação matricial que tornou possível sua total formulação para qualquer topologia, independentemente de propriedades espectrais. A necessidade de se integrar apenas uma matriz e a facilidade de obtenção de resultados em pontos internos tornam o método híbrido simplificado dos elementos de contorno ainda mais vantajoso para problemas axissimétricos. Alguns exemplos numéricos validam as formulações apresentadas. Essa tese é composta por oito capítulos e dois apêndices, como descritos a seguir. O Capítulo 2 trata das soluções fundamentais axissimétricas para o espaço completo e o semi-espaço elástico. As equações governantes para um meio elástico axissimétrico são apresentadas em coordenadas cilíndricas. As soluções fundamentais correspondentes são deduzidas, em termos de integrais do tipo Lipschitz-Hankel, a partir da solução de Muki das equações de equilíbrio de Navier. O Capítulo 3 apresenta o método dos elementos de contorno para problemas axissimétricos no espaço completo e no semi-espaço. A partir das soluções fundamentais apresentadas no Capítulo 2, as equações integrais no contorno são deduzidas, bem como as equações matriciais governantes. Além disso, discute-se a obtenção de uma matriz de rigidez e o cálculo das inversas generalizadas presentes na formulação. As expressões para o cálculo de deslocamentos e tensões no domínio e ao longo do contorno são fornecidas de maneira explícita. O Capítulo 4 apresenta o método híbrido simplificado dos elementos de contorno para problemas axissimétricos no espaço completo e no semi-espaço. Uma nova versão do método é proposta, em que as equações governantes do problema são obtidas a partir de trabalhos virtuais de deslocamentos, uma equação de compatibilidade de deslocamentos e um teorema híbrido de contragradiência. O esquema para o cálculo dos coeficientes indeterminados de U está descrito detalhadamente para o espaço completo, incluindo as soluções analíticas necessárias. A obtenção de uma matriz de rigidez, bem como de deslocamentos e tensões em pontos internos, também é discutida. Bases ortonormais, projetores e inversas generalizadas presentes na formulação são apresentados ao longo do capítulo. O Capítulo 5 apresenta os esquemas numéricos para o cálculo das integrais presentes nos métodos de elementos de contorno convencional e híbrido simplificado aplicados a problemas axissimétricos no espaço completo e no semi-espaço. Os casos de integração estão agrupados segundo a posição do anel de carregamento da solução fundamental em relação ao eixo de axissemetria e ao segmento do contorno ao longo do qual a integral está sendo avaliada. O Capítulo 6 apresenta os exemplos numéricos para problemas axissimétricos finitos, infinitos e no semi-espaço resolvidos pelos métodos de elementos de contorno convencional e híbrido simplificado. Os resultados de deslocamentos e tensões são comparados com a solução analítica ao longo do contorno e em alguns pontos do domínio. O Capítulo 7 apresenta as conclusões de cada aspecto discutido neste trabalho, enfatizando as vantagens e as desvantagens dos métodos de elementos de contorno convencional e híbridos simplificado para problemas axissimétricos no espaço completo e no semi-espaço. Além disso, as contribuições desse trabalho são sumarizadas e algumas questões ainda não respondidas também são formuladas. Finalmente, o Apêndice A refere-se às integrais do tipo Lipschitz-Hankel com produtos de função de Bessel, fornecendo suas expressões explícitas em termos de integrais elípticas completas. O Apêndice B apresenta um resumo dos esquemas numéricos utilizados no cálculo das integrais regulares, integrais fracamente singulares com termos logarítmicos e parte finita de integrais singulares. |