[en] GENERATING SUPERRESOLVED DEPTH MAPS USING LOW COST SENSORS AND RGB IMAGES
Ano de defesa: | 2017 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=28673&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=28673&idi=2 http://doi.org/10.17771/PUCRio.acad.28673 |
Resumo: | [pt] As aplicações da reconstrução em três dimensões de uma cena real são as mais diversas. O surgimento de sensores de profundidade de baixo custo, tal qual o Kinect, sugere o desenvolvimento de sistemas de reconstrução mais baratos que aqueles já existentes. Contudo, os dados disponibilizados por este dispositivo ainda carecem em muito quando comparados àqueles providos por sistemas mais sofisticados. No mundo acadêmico e comercial, algumas iniciativas, como aquelas de Tong et al. [1] e de Cui et al. [2], se propõem a solucionar tal problema. A partir do estudo das mesmas, este trabalho propôs a modificação do algoritmo de super-resolução descrito por Mitzel et al. [3] no intuito de considerar em seus cálculos as imagens coloridas também fornecidas pelo dispositivo, conforme abordagem de Cui et al. [2]. Tal alteração melhorou os mapas de profundidade super-resolvidos fornecidos, mitigando interferências geradas por movimentações repentinas na cena captada. Os testes realizados comprovam a melhoria dos mapas gerados, bem como analisam o impacto da implementação em CPU e GPU dos algoritmos nesta etapa da super-resolução. O trabalho se restringe a esta etapa. As etapas seguintes da reconstrução 3D não foram implementadas. |