[en] INVARIANT SUBSPACES FOR HIPONORMAL OPERATORS

Detalhes bibliográficos
Ano de defesa: 2003
Autor(a) principal: REGINA POSTERNAK
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=3338&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=3338&idi=2
http://doi.org/10.17771/PUCRio.acad.3338
Resumo: [pt] O problema do subespaço invariante consiste na seguinte pergunta: será que todo operador (i.e., transformação linear limitada) atuando em um espaço de Hilbert separável (complexo de dimensão infinita) tem subespaço invariante nãotrivial? Este é, possivelmente, o mais importante problema em aberto na teoria de operadores. Em particular, o problema do subespaço invariante permanece em aberto (pelo menos até a presente data) para operadores hiponormais, ou seja, ainda não se sabe se todo operador hiponormal (atuando em um espaço de Hilbert complexo separável) tem subespaço invariante não-trivial. O objetivo desta dissertação é apresentar, de maneira unificada, um levantamento sobre subespaços invariantes para operadores hiponormais. Inicialmente, o problema do subespaço invariante é abordado em sua forma geral (sem restrição a classes de operadores) onde diversos resultados clássicos são expostos. Em seguida, o problema específico de se encontrar subespaços invariantes para operadores hiponormais é apresentado de maneira sistemática. Em particular, investigamos propriedades do espectro de um operador hiponormal que não tenha subespaço invariante não trivial.