[en] FEATURE-PRESERVING VECTOR FIELD DENOISING

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: JOAO ANTONIO RECIO DA PAIXAO
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=38005&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=38005&idi=2
http://doi.org/10.17771/PUCRio.acad.38005
Resumo: [pt] Nos últimos anos, vários mecanismos permitem medir campos vetoriais reais, provendo uma compreensão melhor de fenômenos importantes, tais como dinâmica de fluidos ou movimentos de fluido cerebral. Isso abre um leque de novos desafios a visualização e análise de campos vetoriais em muitas aplicações de engenharia e de medicina por exemplo. Em particular, dados reais são geralmente corrompidos por ruído, dificultando a compreensão na hora da visualização. Esta informação necessita de uma etapa de remoção de ruído como pré-processamento, no entanto remoção de ruído normalmente remove as descontinuidades e singularidades, que são fundamentais para a análise do campo vetorial. Nesta dissertação é proposto um método inovador para remoção de ruído em campo vetorial baseado em caminhadas aleatórias que preservam certas descontinuidades. O método funciona em um ambiente desestruturado, sendo rápido, simples de implementar e mostra um desempenho melhor do que a tradicional técnica Gaussiana de remoção de ruído. Esta tese propõe também uma metodologia semi-automática para remover ruído, onde o usuário controla a escala visual da filtragem, levando em consideração as mudanças topológicas que ocorrem por causa da filtragem.