[en] GENERALIZATION OF THE DEEP LEARNING MODEL FOR NATURAL GAS INDICATION IN 2D SEISMIC IMAGE BASED ON THE TRAINING DATASET AND THE OPERATIONAL HYPER PARAMETERS RECOMMENDATION

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: LUIS FERNANDO MARIN SEPULVEDA
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=66272&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=66272&idi=2
http://doi.org/10.17771/PUCRio.acad.66272
Resumo: [pt] A interpretação de imagens sísmicas é uma tarefa essencial em diversas áreas das geociências, sendo um método amplamente utilizado na exploração de hidrocarbonetos. Porém, sua interpretação exige um investimento significativo de recursos, e nem sempre é possível obter um resultado satisfatório. A literatura mostra um número crescente de métodos de Deep Learning, DL, para detecção de horizontes, falhas e potenciais reservatórios de hidrocarbonetos, porém, os modelos para detecção de reservatórios de gás apresentam dificuldades de desempenho de generalização, ou seja, o desempenho fica comprometido quando utilizados em imagens sísmicas de novas explorações campanhas. Este problema é especialmente verdadeiro para levantamentos terrestres 2D, onde o processo de aquisição varia e as imagens apresentam muito ruído. Este trabalho apresenta três métodos para melhorar o desempenho de generalização de modelos DL de indicação de gás natural em imagens sísmicas 2D, para esta tarefa são utilizadas abordagens provenientes de Machine Learning, ML e DL. A pesquisa concentra-se na análise de dados para reconhecer padrões nas imagens sísmicas para permitir a seleção de conjuntos de treinamento para o modelo de inferência de gás com base em padrões nas imagens alvo. Esta abordagem permite uma melhor generalização do desempenho sem alterar a arquitetura do modelo DL de inferência de gás ou transformar os traços sísmicos originais. Os experimentos foram realizados utilizando o banco de dados de diferentes campos de exploração localizados na bacia do Parnaíba, no Nordeste do Brasil. Os resultados mostram um aumento de até 39 por cento na indicação correta do gás natural de acordo com a métrica de recall. Esta melhoria varia em cada campo e depende do método proposto utilizado e da existência de padrões representativos dentro do conjunto de treinamento de imagens sísmicas. Estes resultados concluem com uma melhoria no desempenho de generalização do modelo de inferência de gases DL que varia até 21 por cento de acordo com a pontuação F1 e até 15 por cento de acordo com a métrica IoU. Estes resultados demonstram que é possível encontrar padrões dentro das imagens sísmicas usando uma abordagem não supervisionada, e estas podem ser usadas para recomendar o conjunto de treinamento DL de acordo com o padrão na imagem sísmica alvo; Além disso, demonstra que o conjunto de treinamento afeta diretamente o desempenho de generalização do modelo DL para imagens sísmicas.