MINERAÇÃO DE DADOS APLICADA A CLASSIFICAÇÃO DOS CONTRIBUINTES DO ISS.

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Piccirilli, Tiago Levergger
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Pontifícia Universidade Católica de Goiás
Engenharia
BR
PUC Goiás
Programa de Pós-Graduação STRICTO SENSU em Engenharia de Produção e Sistemas
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
ISS
Link de acesso: http://localhost:8080/tede/handle/tede/2443
Resumo: A administração pública é responsável pela instituição, recebimento e controle de tributos pagos pelos contribuintes. Este recurso é imprescindível para manutenção de sua estrutura administrativa e estabelecimento de políticas públicas. Para aperfeiçoar o controle realizado pela administração é necessário investimento em novas tecnologias, visto que o departamento de fiscalização recebe constantemente inúmeros dados da movimentação econômica dos contribuintes e de regularização cadastral. Os recursos computacionais atuais armazenam informações com capacidade superior à condição humana de manipulação e extração de conhecimento. Nesse contexto, surge na ciência uma área denominada Mineração de Dados, especifica para extrair conhecimento e padrões desconhecidos por meio de bases de dados. Este trabalho apresenta um modelo para classificar os contribuintes do Imposto Sobre Serviços de Qualquer Natureza (ISS) que apresentaram alguma irregularidade, de posse dos recursos e técnicas da mineração. O trabalho foi realizado no Município de Goiânia na Secretaria de Finanças especificamente no departamento de Arrecadação, abrangendo o cenário apresentado no ano de 2011. Entre os modelos construídos com algoritmo de árvore de decisão, apresentou como resultado, a classificação dos contribuintes irregulares com um índice de acertos de 92,03%.