ANÁLISE COMPARATIVA DE PREVISÃO POR MEIO DE MODELOS ECONOMÉTRICOS E REDES NEURAIS.

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Lima, Ricardo Rodrigues Dias de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Pontifícia Universidade Católica de Goiás
Engenharia
BR
PUC Goiás
Programa de Pós-Graduação STRICTO SENSU em Engenharia de Produção e Sistemas
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://localhost:8080/tede/handle/tede/2473
Resumo: O propósito deste trabalho é testar métodos econométricos e de inteligência artificial para o problema de previsão de séries temporais, em especial regressão linear múltipla e rede neural com regra Delta. Com tais modelos pretende-se prever um passo a frente à produção da indústria de transformação do Estado de Goiás. Os erros das estimativas em todos os modelos são comparados com o teste de normalidade para validar a adequação do modelo. Ao final, os modelos são comparados utilizando, erro quadrático médio, MAPE e desvio padrão para identificar o melhor modelo e método adequado para a predição da produção da indústria de transformação.