Evaluation of system-level impacts of a persistent main memory architecture
Ano de defesa: | 2012 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Pontifícia Universidade Católica do Rio Grande do Sul
Porto Alegre |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://hdl.handle.net/10923/1664 |
Resumo: | For almost 30 years, computer memory systems have been essentially the same: volatile, high speed memory technologies like SRAM and DRAM used for cache and main memory; magnetic disks for high-end data storage; and persistent, low speed flash memory for storage with low capacity/low energy consumption requirements such as embedded/mobile devices. Today we watch the emergence of new non-volatile memory (NVM) technologies that promise to radically change the landscape of memory systems. In this work we assess system-level latency and energy impacts of a computer with persistent main memory using PCRAM and Memristor. The experimental results support the feasibility of employing emerging non-volatile memory technologies as persistent main memory, indicating that energy improvements over DRAM should be significant. This study has also compared the development and execution of applications using both a traditional filesystem design and a framework specific of in-memory persistence (Mnemosyne). It concludes that in order to reap the major rewards potentially offered by persistent main memory, it is necessary to take new programming approaches that do not separate volatile memory from persistent secondary storage. |