Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
Gusmão Neto, Augusto Parisot de |
Orientador(a): |
Machado, Raphael Carlos Santos |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal Fluminense (UFF)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.repositorio.mar.mil.br/handle/ripcmb/846311
|
Resumo: |
O crescimento do acesso a dispositivos computacionais aumentou sobremaneira desde o início dos anos 2000. A miniaturização de componentes eletrônicos, os avanços na tecnologia de baterias e telas barateou esses dispositivos, permitindo que uma mesma pessoa possua vários desses em uso (tablets, telefones, computadores e dispositivos domésticos inteligentes). Esse grande crescimento não é necessariamente acompanhado de aumento de mentalidade de segurança e ainda, a massa de dados gerada pela interação com esses dispositivos gera interesse de grupos com intenções maliciosas de lucro e todo tipo de software malicioso é criado diariamente para subverter e acessar esses dispositivos. Dentre esses muitos softwares maliciosos, temos os ransomwares: armas capazes de cifrar todos os arquivos da vítima para que esta se veja obrigada a pagar um resgate sob o risco de não conseguir recuperar seus dados. Neste trabalho, realizamos um conjunto de experimentos para avaliar dinamicamente técnicas de Aprendizado de Máquina para detecção de malware e sua classificação em suas respectivas famílias. Para executar os experimentos, coletamos um total de 989 amostras de ransomwares das oito famílias mais proeminentes em 2021 e 2022, baixadas de repositórios públicos : Conti, Ryuk, Revil, Egregor, LockBit, Clop, Netwalker e MountLocker além de 90 amostras de software benignos. Primeiro, montamos um ambiente controlado/isolado para registrar o comportamento do ransomware para avaliação de técnicas de Aprendizado de Máquina em termos de métricas de desempenho comumente usadas na literatura (Accuracy, Precision, Recall e Fi-Mesure). Para executar as análises utilizamos o Cuckoo Sandbox. Foram criadas ferramentas na linguagem Python para automatização de tarefas como busca das amostras nos repositórios públicos e mineração de dados para composição dos conjuntos de dados de detecção. A partir dos relatórios de execução salvos na forma de relatórios JSON, utilizamos técnicas de mineração de texto e de chamadas de API aplicadas em ferramentas que construímos especialmente para extrairmos um conjunto promissor de dados que representam o comportamento de uma amostra de ransomware e submetemos os conjuntos de dados à classificação utilizando seis algoritmos de Aprendizado de Máquina: Decision Tree, Random Forest, K-Nearest Neighbors, Naive Bayes, Support Vector Machines e Multilayer Perceptron. A principal motivação para elaboração dos experimentos é que diferentes técnicas foram projetadas para otimizar diferentes critérios, que se comportam de maneira diferente, mesmo em condições semelhantes. Os resultados experimentais mostram que o métodos propostos podem alcançar um bom desempenho de classificação ao usar o algoritmos Random Forest e Decision Tree. Os melhores resultados de classificação foram alcançados com esses classificadores em três situações: a primeira e a segunda, utilizando-se o conjunto de dados minerados ao utilizar a técnica de mineração de texto TF-IDF nas seções Signatures e Memory dos relatórios de análise e a terceira, no conjunto de dados minerado a partir da contagem de chamadas de API. Além da classificação, revelamos as diretrizes utilizadas para proteção do ambiente de análise das ferramentas anti-VM, tanto para a configuração do Sistema Operacional quanto para a conectividade de rede utilizada. |