Mineração de dados aplicados ao sistema integrado de administração financeira do governo federal - SIAFI : detecção de anomalias na emissão de notas de empenho
Ano de defesa: | 2008 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Laboratório Nacional de Computação Científica
Serviço de Análise e Apoio a Formação de Recursos Humanos BR LNCC Programa de Pós-Graduação em Modelagem Computacional |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://tede.lncc.br/handle/tede/94 |
Resumo: | Esta tese tem por objetivo propor um modelo para a detecção automática de indícios de irregularidades na execução da despesa pública, baseado em dados extraídos do Sistema Integrado de Administração Financeira do Governo Federal - SIAFI. O modelo proposto foi desenvolvido para atuar como ferramenta auxiliar ao trabalho de fiscalização da Administração Pública executado pelo Tribunal de Contas da União. As análises realizadas pelo modelo baseiam-se em dois procedimentos complementares: sistema especialista e mineração de dados. A primeira alternativa permite criar um repositório de regras de conhecimento, extraídas da legislação e da experiência de analistas do TCU. A mineração de dados busca de forma automática informações não triviais, que não possam ser facilmente explicitadas através das regras de conhecimento. A principal contribuição do trabalho é a sistematização do procedimento de detecção, detalhando os componentes do modelo e a interação entre eles. Com o objetivo de validar o modelo proposto, é feita a implementação do componente de mineração de dados, caracterizado no trabalho por um modelo matemático de comportamento quanto à execução da despesa e por algoritmos que, utilizando o modelo de comportamento, permitem detectar indícios de irregularidades. O componente de mineração de dados foi implementado com o uso de técnicas estatísticas, redes neurais e lógica nebulosa. |