Desenvolvimento de metodologias de novo para predição de estruturas de proteínas
Ano de defesa: | 2014 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Laboratório Nacional de Computação Científica
Serviço de Análise e Apoio a Formação de Recursos Humanos Brasil LNCC Programa de Pós-Graduação em Modelagem Computacional |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://tede.lncc.br/handle/tede/196 |
Resumo: | A predição de novo de estruturas de proteínas almeja encontrar a conformação tridimensional de uma proteína a partir de sua sequência de aminoácidos sem o uso de moldes/estruturas experimentais de referência. Uma das estratégias de maior sucesso consiste em construir modelos a partir de uma coleção de fragmentos de outras proteínas utilizando um algoritmo de otimização. O GAPF (Genetic Algorithms for Protein Folding) é um programa de predição ab initio, desenvolvido pelo GMMSB/LNCC, que utiliza um algoritmo genético (AG) de múltiplas soluções para a exploração da superfície de energia livre. O objetivo deste trabalho é o desenvolvimento de uma metodologia de novo para o programa GAPF objetivando o aumento da sua capacidade preditiva. A principal estratégia implementada baseia-se no uso de bibliotecas de fragmentos. Os fragmentos são escolhidos com base na similaridade de sequência e predição de estruturas secundárias e foram utilizados para compor os indivíduos da população inicial do AG e também através do uso de operadores de mutação específicos. Desenvolveu-se uma estratégia de inserção de fragmentos de tamanho variável, onde a determinação do tamanho utiliza informações obtidas da predição de estrutura secundária. Adicionalmente, foi incorporada uma estratégia de favorecimento da compactação hidrofóbica das estruturas preditas através do desenvolvimento de uma nova forma de seleção parental para a geração de novos indivíduos durante o AG. A metodologia foi testada em um conjunto de 20 proteínas, contendo de 20 a 146 resíduos de aminoácidos, pertencentes às classes principalmente-α, principalmente-β e α/β. Os resultados obtidos mostraram que a metodologia de novo desenvolvida foi capaz de melhorar a predição para 75% das proteínas do conjunto, sendo que foram verificadas melhorias consideradas significativas para 50% do conjunto. Além de uma melhora na performance computacional (i.e., menor número de avaliações da função energia), observou-se também a geração de indivíduos exibindo uma melhor compactação hidrofóbica. Os resultados deste trabalho apontam caminhos importantes para a melhoria da metodologia de novo no contexto do programa GAPF e viabilizaram a construção do protocolo utilizado pelo GMMSB em sua participação no evento Critical Assessment of Protein Structure Prediction - CASP 11. |