Desenvolvimento de metodologias para predição de estruturas de proteínas independente de moldes

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Rocha, Gregório Kappaun
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Laboratório Nacional de Computação Científica
Coordenação de Pós-Graduação e Aperfeiçoamento (COPGA)
Brasil
LNCC
Programa de Pós-Graduação em Modelagem Computacional
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://tede.lncc.br/handle/tede/221
Resumo: O problema da predição de estrutura de proteínas (PSP) consiste em desvendar o arranjo tridimensional da molécula a partir de sua sequência de aminoácidos. Conhecer a estrutura das proteínas constituintes de um sistema biológico é uma forma de se obter informações cruciais sobre o seu funcionamento, haja vista que a função de uma proteína está intrinsecamente relacionada à sua estrutura nativa tridimensional. A determinação experimental da estrutura de uma proteína além de apresentar dificuldades técnicas, é também dispendiosa em volume de trabalho e de tempo. Sendo assim, o investimento em métodos computacionais para PSP torna-se eminente. Essa tese tem como objetivo geral aumentar a capacidade preditiva do programa de predição de estrutura de proteínas GAPF e contribuir para o avanço das teorias e metodologias na área da predição independente de moldes (free-modeling). Os esforços são direcionados em duas frentes: (i) Melhorar a modelagem da função de energia, através do desenvolvimento e implementação de novos potenciais para a modelagem do problema. (ii) Incrementar a busca conformacional, através do desenvolvimento e implementação de um algoritmo genético multiobjetivo. Para a modelagem do problema, foram inseridos na função custo novos potenciais ad hoc que tratam da compactação hidrofóbica e das ligações de hidrogênio, componentes fundamentais no enovelamento protéico. Para a busca na superfície de energia, um algoritmo genético não-geracional multiobjetivo com crowding fenotípico foi proposto. A nova metodologia foi avaliada em um conjunto teste com 46 proteínas, de todas as classes, e comparada com métodos consolidados na literatura como o QUARK. As contribuições desta tese proporcionaram um grande avanço no poder preditivo do programa GAPF, aumentando a qualidade dos modelos e permitindo investir em sequências maiores. Avanços foram notáveis na predição de folhas-beta, principalmente fruto dos potenciais de ligação de hidrogênio inseridos. Disponibilizou-se, ainda, ferramentas interessantes para o desenvolvimento futuro do programa e colocou o GAPF como um bom candidato para predições independentes de molde frente metodologias de destaque na área.