Desenvolvimento e validação de novos métodos de distribuição da população inicial em algoritmos genéticos para o problema de docking proteína-ligante
Ano de defesa: | 2008 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Laboratório Nacional de Computação Científica
Serviço de Análise e Apoio a Formação de Recursos Humanos BR LNCC Programa de Pós-Graduação em Modelagem Computacional |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://tede.lncc.br/handle/tede/84 |
Resumo: | Os métodos de docking proteína-ligante, são métodos computacionais usados para predizer o modo de ligação de moléculas candidatas a fármaco em seu receptor. O docking permite o teste de centenas de compostos em um curto espaço de tempo, auxiliando na descoberta de novos candidatos a fármacos. A grande complexidade que envolve a ligação do complexo ligante-proteína, torna o problema de docking difícil de ser resolvido computacionalmente. Neste trabalho, são usados os Algoritmos Genéticos, que são uma técnica de otimização baseada na teoria da evolução biológica de Darwin. O algoritmo proposto foi implementado e testado inicialmente por Camila S. de Magalhães em sua tese de doutorado, junto ao Grupo de Modelagem Molecular de Sistemas Biológicos do LNCC, com um conjunto de 5 ligantes de HIV-1 protease. Foi construido um novo conjunto utilizado para teste, agora com 49 estruturas com propriedades físico-químicas diversas, distribuidos em 22 famílias distintas de proteínas, permitindo um teste mais amplo do algoritmo. Foi realizado um estudo aprofundado sobre a dependência do Algoritmo Genético em relação à distribuição da sua população inicial e investigou-se formas mais eficientes e robustas de gerar a mesma. Dentre estas, a proposta de distribuir a população inicial baseada nas coordenadas dos indivíduos de menor energia na população (proposta 5), é muito promissora. Esta distribuição permitiu o algoritmo obter bons resultados, encontrando soluções de menor energia na população muito próximas a estrutura experimental otimizada, sem possuir informações específicas sobre a estrutura experimental. Este fato é muito importante, pois torna o algoritmo mais realista, tendo em vista que no desenho racional de fármacos real não se dispoe da estrutura experimental. |