Homomorphic cryptography applied in SIR and SIRV models

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Lunkes, Aline de Lurdes Zuliani
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Laboratório Nacional de Computação Científica
Coordenação de Pós-Graduação e Aperfeiçoamento (COPGA)
Brasil
LNCC
Programa de Pós-Graduação em Modelagem Computacional
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://tede.lncc.br/handle/tede/386
Resumo: In this work, we deal with the theoretical calculation of the complexities of the Partial Homomorphic Encrypt (PHE) and Fully Homomorphic Encrypt (FHE) schemes. Based on this, we have a strong result in cryptography for security and privacy. Given the Nth degree truncated polynomial ring (NTRU) and Learning with Errors (LWE) algorithms (considered of the best FHE algorithms), the χ distribution, and the error arising from LWE algorithm, we establish the equivalence between NTRU and LWE. In other words, one can break the NTRU if and only if one can break the LWE and vice versa. Finally, yet significant, we present a case study utilizing FHE to numerically solve systems related to the SIR (susceptible-infected-removed population) and SIRV (susceptible-infected-removed- vaccinated population) population models. For this, we use the Forward Euler Method and the Finite Difference Method. These methods were implemented in Python to obtain the desired results based on the dynamics of the populations involved, and by comparing the results obtained with and without the use of encryption, we applied homomorphic encryption to public health data