Metaheurísticas para problemas de otimização em dois níveis
Ano de defesa: | 2014 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Laboratório Nacional de Computação Científica
Coordenação de Pós-Graduação e Aperfeiçoamento (COPGA) Brasil LNCC Programa de Pós-Graduação em Modelagem Computacional |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://tede.lncc.br/handle/tede/209 |
Resumo: | Este trabalho visa o desenvolvimento e implementação computacional de algoritmos robustos e eficientes para tratar problemas de otimização multinível, particularmente os de dois níveis. Problemas desta natureza são caracterizados por possuírem um problema de otimização dentro das restrições de outro problema de otimização, e são considerados mais difíceis de serem tratados do que os problemas clássicos de otimização, pois, em geral, não são convexos e nem diferenciáveis, mesmo quando as funções envolvidas são todas lineares. Para resolver tais problemas, diferentes técnicas de otimização foram desenvolvidas, utilizando como base as metaheurísticas de Otimização por Colônia de Formigas e Evolução Diferencial. Além destas, propôs-se um modelo de substituição (metamodelo), baseado no Método dos Vizinhos mais Próximos, na tentativa de reduzir o custo computacional em um dos métodos proposto. Uma diversidade de problemas em dois níveis foi utilizada para validar os algoritmos desenvolvidos, incluindo: (i) problemas de otimização no espaço contínuo, restritos e irrestritos; (ii) uma aplicação em Pesquisa Operacional envolvendo o problema de planejamento de produção e distribuição; e (iii) problemas envolvendo múltiplos seguidores no nível inferior. A análise da aplicabilidade e do desempenho das metodologias propostas mostraram que estas foram capazes de resolver com sucesso todos os problemas, onde resultados competitivos foram obtidos na linha dos problemas abordados. |