Novos métodos incrementais para otimização convexa não-diferenciável em dois níveis com aplicações em reconstrução de imagens em tomografia por emissão

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Simões, Lucas Eduardo Azevedo
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-17052013-103616/
Resumo: Apresentamos dois novos métodos para a solução de problemas de otimização convexa em dois níveis não necessariamente diferenciáveis, i.e., mostramos que as sequências geradas por ambos os métodos convergem para o conjunto ótimo de uma função não suave sujeito a um conjunto que também envolve a minimização de uma função não diferenciável. Ambos os algoritmos dispensam qualquer tipo de resolução de subproblemas ou busca linear durante suas iterações. Ao final, para demonstrar que os métodos são viáveis, resolvemos um problema de reconstrução de imagens tomográficas